Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 1.294
Filter
1.
Hum Vaccin Immunother ; 19(1): 2209000, 2023 12 31.
Article in English | MEDLINE | ID: covidwho-20244593

ABSTRACT

New technologies for the prevention of infectious diseases are emerging to address unmet medical needs, in particular, the use of long-acting monoclonal antibodies (mAb) to prevent Respiratory Syncytial Virus (RSV) lower respiratory tract disease in infants during their first RSV season. The lack of precedent for mAbs for broad population protection creates challenges in the assessment of upcoming prophylactic long-acting mAbs for RSV, with associated consequences in legislative and registration categorization, as well as in recommendation, funding, and implementation pathways. We suggest that the legislative and regulatory categorization of preventative solutions should be decided by the effect of the product in terms of its impact on the population and health-care systems rather than by the technology used or its mechanism of action. Immunization can be passive and active, both having the same objective of prevention of infectious diseases. Long-acting prophylactic mAbs work as passive immunization, as such, their recommendations for use should fall under the remit of National Immunization Technical Advisory Groups or other relevant recommending bodies for inclusion into National Immunization Programs. Current regulations, policy, and legislative frameworks need to evolve to embrace such innovative preventative technologies and acknowledge them as one of key immunization and public health tools.


Subject(s)
Communicable Diseases , Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , Infant , Humans , Respiratory Syncytial Virus Infections/prevention & control , Immunization , Vaccination , Antibodies, Monoclonal , Immunization, Passive
2.
MAbs ; 15(1): 2222874, 2023.
Article in English | MEDLINE | ID: covidwho-20243537

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19). Antibodies induced by SARS-CoV-2 infection or vaccination play pivotal roles in the body's defense against the virus; many monoclonal antibodies (mAbs) against SARS-CoV-2 have been cloned, and some neutralizing mAbs have been used as therapeutic drugs. In this study, we prepared an antibody panel consisting of 31 clones of anti-SARS-CoV-2 mAbs and analyzed and compared their biological activities. The mAbs used in this study were classified into different binding classes based on their binding epitopes and showed binding to the SARS-CoV-2 spike protein in different binding kinetics. A multiplex assay using the spike proteins of Alpha, Beta, Gamma, Delta, and Omicron variants clearly showed the different effects of variant mutations on the binding and neutralization activities of different binding classes of mAbs. In addition, we evaluated Fcγ receptor (FcγR) activation by immune complexes consisting of anti-SARS-CoV-2 mAb and SARS-CoV-2 pseudo-typed virus, and revealed differences in the FcγR activation properties among the binding classes of anti-SARS-CoV-2 mAbs. It has been reported that FcγR-mediated immune-cell activation by immune complexes is involved in the promotion of immunopathology of COVID-19; therefore, differences in the FcγR-activation properties of anti-SARS-CoV-2 mAbs are among the most important characteristics when considering the clinical impacts of anti-SARS-CoV-2 mAbs.


Subject(s)
Antigen-Antibody Complex , COVID-19 , Humans , Receptors, IgG , SARS-CoV-2 , Antibodies, Viral , Antibodies, Monoclonal
3.
Viruses ; 15(5)2023 05 11.
Article in English | MEDLINE | ID: covidwho-20243425

ABSTRACT

Antibody-dependent enhancement of infection (ADE) is clinically relevant to Dengue virus (DENV) infection and poses a major risk to the application of monoclonal antibody (mAb)-based therapeutics against related flaviviruses such as the Zika virus (ZIKV). Here, we tested a two-tier approach for selecting non-cross-reactive mAbs combined with modulating Fc glycosylation as a strategy to doubly secure the elimination of ADE while preserving Fc effector functions. To this end, we selected a ZIKV-specific mAb (ZV54) and generated three ZV54 variants using Chinese hamster ovary cells and wild-type (WT) and glycoengineered ΔXF Nicotiana benthamiana plants as production hosts (ZV54CHO, ZV54WT, and ZV54ΔXF). The three ZV54 variants shared an identical polypeptide backbone, but each exhibited a distinct Fc N-glycosylation profile. All three ZV54 variants showed similar neutralization potency against ZIKV but no ADE activity for DENV infection, validating the importance of selecting the virus/serotype-specific mAbs for avoiding ADE by related flaviviruses. For ZIKV infection, however, ZV54CHO and ZV54ΔXF showed significant ADE activity while ZV54WT completely forwent ADE, suggesting that Fc glycan modulation may yield mAb glycoforms that abrogate ADE even for homologous viruses. In contrast to the current strategies for Fc mutations that abrogate all effector functions along with ADE, our approach allowed the preservation of effector functions as all ZV54 glycovariants retained antibody-dependent cellular cytotoxicity (ADCC) against the ZIKV-infected cells. Furthermore, the ADE-free ZV54WT demonstrated in vivo efficacy in a ZIKV-infection mouse model. Collectively, our study provides further support for the hypothesis that antibody-viral surface antigen and Fc-mediated host cell interactions are both prerequisites for ADE, and that a dual-approach strategy, as shown herein, contributes to the development of highly safe and efficacious anti-ZIKV mAb therapeutics. Our findings may be impactful to other ADE-prone viruses, including SARS-CoV-2.


Subject(s)
COVID-19 , Dengue Virus , Dengue , Flavivirus , Zika Virus Infection , Zika Virus , Animals , Mice , Cricetinae , Zika Virus/genetics , CHO Cells , Dengue Virus/genetics , Cricetulus , SARS-CoV-2 , Antibodies, Viral , Antibodies, Monoclonal/therapeutic use , Cross Reactions , Antibodies, Neutralizing/therapeutic use
5.
Front Immunol ; 14: 1169735, 2023.
Article in English | MEDLINE | ID: covidwho-20242914

ABSTRACT

Background: Risankizumab, a humanized IgG1 monoclonal antibody that selectively inhibits IL-23, is currently approved for the treatment of moderate-to-severe plaque psoriasis and Crohn's disease. The real-world safety study of risankizumab in a large- sample population is currently lacking. The aim of this study was to evaluate risankizumab-associated adverse events (AEs) and characterize the clinical priority through the data mining of the Food and Drug Administration (FDA) Adverse Event Reporting System (FAERS). Methods: Disproportionality analyses were performed by calculating the reporting odds ratios (RORs), deemed significant when the lower limit of the 95% confidence interval was greater than 1, to quantify the signals of risankizumab-related AEs from the second quarter (Q2) of 2019 to 2022 Q3. Serious and non-serious cases were compared, and signals were prioritized using a rating scale. Results: Risankizumab was recorded in 10,235 reports, with 161 AEs associated with significant disproportionality. Of note, 37 PTs in at least 30 cases were classified as unexpected AEs, which were uncovered in the drug label, such as myocardial infarction, cataract, pancreatitis, diabetes mellitus, stress, and nephrolithiasis. 74.68%, 25.32%, and 0% PTs were graded as weak, moderate, and strong clinical priorities, respectively. A total of 48 risankizumab-related AEs such as pneumonia, cerebrovascular accident, cataract, loss of consciousness, cardiac disorder, hepatic cirrhosis, and thrombosis, were more likely to be reported as serious AEs. The median TTO of moderate and weak signals related to risankizumab was 115 (IQR 16.75-305) and 124 (IQR 29-301) days, respectively. All of the disproportionality signals had early failure type features, indicating that risankizumab-associated AEs gradually decreased over time. Conclusion: Our study found potential new AE signals and provided valuable evidence for clinicians to mitigate the risk of risankizumab-associated AEs based on an extensive analysis of a large-scale postmarketing international safety database.


Subject(s)
Drug-Related Side Effects and Adverse Reactions , Pharmacovigilance , United States/epidemiology , Humans , Adverse Drug Reaction Reporting Systems , United States Food and Drug Administration , Drug-Related Side Effects and Adverse Reactions/diagnosis , Drug-Related Side Effects and Adverse Reactions/epidemiology , Antibodies, Monoclonal , Antibodies, Monoclonal, Humanized
6.
J Control Release ; 359: 1-11, 2023 07.
Article in English | MEDLINE | ID: covidwho-20242830

ABSTRACT

Data show a decrease in the risk of hospitalization and death from COVID-19. To date, global vaccinations for SARS-CoV-2 protections are underway, but additional treatments are urgently needed to prevent and cure infection among naïve and even vaccinated people. Neutralizing monoclonal antibodies are very promising for prophylaxis and therapy of SARS-CoV-2 infections. However, traditional large-scale methods of producing such antibodies are slow, extremely expensive and possess a high risk of contamination with viruses, prions, oncogenic DNA and other pollutants. The present study is aimed at developing an approach of producing monoclonal antibodies (mAbs) against SARS-CoV-2 spike (S) protein in plant systems which offers unique advantages, such as the lack of human and animal pathogens or bacterial toxins, relatively low-cost manufacturing, and ease of production scale-up. We selected a single N-terminal domain functional camelid-derived heavy (H)-chain antibody fragments (VHH, AKA nanobodies) targeted to receptor binding domain of SARS-CoV-2 spike protein and developed methods of their rapid production using transgenic plants and plant cell suspensions. Isolated and purified plant-derived VHH antibodies were compared with mAbs produced in traditional mammalian and bacterial expression systems. It was found that plant generated VHH using the proposed methods of transformation and purification possess the ability to bind to SARS-CoV-2 spike protein comparable to that of monoclonal antibodies derived from bacterial and mammalian cell cultures. The results of the present studies confirm the visibility of producing monoclonal single-chain antibodies with a high ability to bind the targeted COVID-19 spike protein in plant systems within a relatively shorter time span and at a lower cost when compared with traditional methods. Moreover, similar plant biotechnology approaches can be used for producing monoclonal neutralizing antibodies against other types of viruses.


Subject(s)
COVID-19 , Single-Domain Antibodies , Humans , Animals , SARS-CoV-2 , Antibodies, Viral , Antibodies, Monoclonal/chemistry , Antibodies, Neutralizing , Mammals/metabolism
8.
Viruses ; 15(5)2023 04 25.
Article in English | MEDLINE | ID: covidwho-20235598

ABSTRACT

Drug appropriateness is a pillar of modern evidence-based medicine, but the turnaround times of genomic sequencing are not compatible with the urgent need to deliver treatments against microorganisms. Massive worldwide genomic surveillance has created an unprecedented landscape for exploiting viral sequencing for therapeutic purposes. When it comes to therapeutic antiviral antibodies, using IC50 against specific polymorphisms of the target antigen can be calculated in vitro, and a list of mutations leading to drug resistance (immune escape) can be compiled. The author encountered this type of knowledge (available from the Stanford University Coronavirus Antiviral Resistance Database,) in a publicly accessible repository of SARS-CoV-2 sequences. The author used a custom function of the CoV-Spectrum.org web portal to deliver up-to-date, regional prevalence estimates of baseline efficacy for each authorized anti-spike mAb across all co-circulating SARS-CoV-2 sublineages at a given time point. This publicly accessible tool can inform therapeutic choices that would otherwise be blind.


Subject(s)
COVID-19 , Humans , SARS-CoV-2/genetics , Genomics , Antibodies, Monoclonal/therapeutic use , Antibodies, Viral/therapeutic use , Antiviral Agents , Spike Glycoprotein, Coronavirus/genetics , Antibodies, Neutralizing
9.
Front Immunol ; 14: 1162342, 2023.
Article in English | MEDLINE | ID: covidwho-20235328

ABSTRACT

Monoclonal antibodies (mABs) are safe and effective proteins produced in laboratory that may be used to target a single epitope of a highly conserved protein of a virus or a bacterial pathogen. For this purpose, the epitope is selected among those that play the major role as targets for prevention of infection or tissue damage. In this paper, characteristics of the most important mABs that have been licensed and used or are in advanced stages of development for use in prophylaxis and therapy of infectious diseases are discussed. We showed that a great number of mABs effective against virus or bacterial infections have been developed, although only in a small number of cases these are licensed for use in clinical practice and have reached the market. Although some examples of therapeutic efficacy have been shown, not unlike more traditional antiviral or antibacterial treatments, their efficacy is significantly greater in prophylaxis or early post-exposure treatment. Although in many cases the use of vaccines is more effective and cost-effective than that of mABs, for many infectious diseases no vaccines have yet been developed and licensed. Furthermore, in emergency situations, like in epidemics or pandemics, the availability of mABs can be an attractive adjunct to our armament to reduce the impact. Finally, the availability of mABs against bacteria can be an important alternative, when multidrug-resistant strains are involved.


Subject(s)
Bacterial Infections , COVID-19 , Communicable Diseases , Rabies Vaccines , Rabies , Respiratory Syncytial Virus, Human , Humans , Antibodies, Monoclonal/therapeutic use , SARS-CoV-2 , HIV , Antibodies, Viral/therapeutic use , Epitopes , Bacterial Infections/drug therapy , Communicable Diseases/drug therapy
11.
Front Immunol ; 14: 1151888, 2023.
Article in English | MEDLINE | ID: covidwho-20242487

ABSTRACT

Immunogenicity continues to pose a challenge in the development of biotherapeutics like conventional therapeutic-proteins and monoclonal antibodies as well as emerging modalities such as gene-therapy components, gene editing, and CAR T cells. The approval of any therapeutic is based on a benefit-risk evaluation. Most biotherapeutics address serious medical conditions where the standard of care has a poor outcome. Consequently, even if immunogenicity limits the utility of the therapeutic in a sub-set of patients, the benefit-risk assessment skews in favor of approval. Some cases resulted in the discontinuation of biotherapeutics due to immunogenicity during drug development processes, This special issue presents a platform for review articles offering a critical assessment of accumulated knowledge as well as novel findings related to nonclinical risks that extend our understanding of the immunogenicity of biotherapeutics. Some of the studies in this collection leveraged assays and methodologies refined over decades to support more clinically relevant biological samples. Others have applied rapidly advancing methodologies in pathway-specific analyses to immunogenicity. Similarly, the reviews address urgent issues such as the rapidly emerging cell and gene therapies which hold immense promise but could have limited reach as a significant number of the patient population could potentially not benefit due to immunogenicity. In addition to summarizing the work presented in this special issue we have endeavored to identify areas where additional studies are required to understand the risks of immunogenicity and develop appropriate mitigation strategies.


Subject(s)
Antibodies, Monoclonal , Humans , Antibodies, Monoclonal/therapeutic use , Risk Assessment
12.
Ter Arkh ; 95(1): 78-84, 2023 Feb 24.
Article in Russian | MEDLINE | ID: covidwho-20242130

ABSTRACT

BACKGROUND: Primary immunodeficiencies (PIDs), now known as inborn errors of immunity, are a group of inherited diseases caused by defects in the genes that control the immune response. Patients with PIDs have risks of developing a severe course and/or death in COVID-19. Passive immunization with long-acting monoclonal antibodies (MABs) to SARS-CoV-2 should be considered as pre-exposure prophylaxis in patients with PIDs. Tixagevimab/cilgavimab is a combination of MABs that bind to the SARS-CoV-2 spike protein. AIM: To evaluate the efficacy and safety of pre-exposure prophylaxis of new SARS-CoV-2 infection in PIDs with the combination of tixagevimab/cilgavimab. MATERIALS AND METHODS: Forty eight patients diagnosed with PIDs were included in the study. Median follow-up after drug administration was 174 days. The total number of confirmed coronavirus infections in patients with PIDs as well as 6 months before and after administration of MAT were assessed. RESULTS: In the analyzed cohort, the overall incidence of COVID-19 from pandemic onset to MABs administration was 75% (36/48), with 31% (11/36) of over-infected patients having had the infection more than once. The incidence of COVID-19 immediately 6 months before the introduction of tixagevimab/cilgavimab was 40%. All patients who had COVID-19 after pre-exposure prophylaxis had a mild infection. The incidence of COVID-19 6 months after tixagevimab/cilgavimab administration significantly decreased compared to the incidence 6 months before administration (7 and 40%, respectively; p<0.001). CONCLUSION: The use of tixagevimab/cilgavimab in patients with PIDs is effective as pre-exposure prophylaxis and reduces the risk of severe COVID-19.


Subject(s)
COVID-19 , Pre-Exposure Prophylaxis , Humans , Adult , COVID-19/prevention & control , Moscow/epidemiology , SARS-CoV-2 , Antibodies, Monoclonal
13.
Nat Commun ; 14(1): 3334, 2023 06 07.
Article in English | MEDLINE | ID: covidwho-20241659

ABSTRACT

COVID-19 patients at risk of severe disease may be treated with neutralising monoclonal antibodies (mAbs). To minimise virus escape from neutralisation these are administered as combinations e.g. casirivimab+imdevimab or, for antibodies targeting relatively conserved regions, individually e.g. sotrovimab. Unprecedented genomic surveillance of SARS-CoV-2 in the UK has enabled a genome-first approach to detect emerging drug resistance in Delta and Omicron cases treated with casirivimab+imdevimab and sotrovimab respectively. Mutations occur within the antibody epitopes and for casirivimab+imdevimab multiple mutations are present on contiguous raw reads, simultaneously affecting both components. Using surface plasmon resonance and pseudoviral neutralisation assays we demonstrate these mutations reduce or completely abrogate antibody affinity and neutralising activity, suggesting they are driven by immune evasion. In addition, we show that some mutations also reduce the neutralising activity of vaccine-induced serum.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Antibodies, Monoclonal/therapeutic use , Immunotherapy , Mutation , Antibodies, Neutralizing , Antibodies, Viral
14.
JCI Insight ; 8(13)2023 07 10.
Article in English | MEDLINE | ID: covidwho-20238950

ABSTRACT

Given the COVID-19 pandemic, there is interest in understanding ligand-receptor features and targeted antibody-binding attributes against emerging SARS-CoV-2 variants. Here, we developed a large-scale structure-based pipeline for analysis of protein-protein interactions regulating SARS-CoV-2 immune evasion. First, we generated computed structural models of the Spike protein of 3 SARS-CoV-2 variants (B.1.1.529, BA.2.12.1, and BA.5) bound either to a native receptor (ACE2) or to a large panel of targeted ligands (n = 282), which included neutralizing or therapeutic monoclonal antibodies. Moreover, by using the Barnes classification, we noted an overall loss of interfacial interactions (with gain of new interactions in certain cases) at the receptor-binding domain (RBD) mediated by substituted residues for neutralizing complexes in classes 1 and 2, whereas less destabilization was observed for classes 3 and 4. Finally, an experimental validation of predicted weakened therapeutic antibody binding was performed in a cell-based assay. Compared with the original Omicron variant (B.1.1.529), derivative variants featured progressive destabilization of antibody-RBD interfaces mediated by a larger set of substituted residues, thereby providing a molecular basis for immune evasion. This approach and findings provide a framework for rapidly and efficiently generating structural models for SARS-CoV-2 variants bound to ligands of mechanistic and therapeutic value.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Angiotensin-Converting Enzyme 2 , Immune Evasion , Ligands , Pandemics , Antibodies, Monoclonal
15.
Front Cell Infect Microbiol ; 13: 1192512, 2023.
Article in English | MEDLINE | ID: covidwho-20237911

ABSTRACT

Background: Immune-evading severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants are emerging continuously. The clinical effectiveness of monoclonal antibody agents that exhibit decreased in vitro activity against SARS-CoV-2 variants needs to be elucidated. Methods: A nationwide, multicenter, retrospective cohort study was designed to evaluate the effectiveness of regdanvimab, an anti-SARS-CoV-2 monoclonal antibody agent. Regdanvimab was prescribed in South Korea before and after the emergence of the delta variant, against which the in vitro activity of regdanvimab was decreased but present. Mild to moderate coronavirus 2019 (COVID-19) patients with risk factors for disease progression who were admitted within seven days of symptom onset were screened in four designated hospitals between December 2020 and September 2021. The primary outcomes, O2 requirements and progression to severe disease within 21 days of admission, were compared between the regdanvimab and supportive care groups, with a subgroup analysis of delta variant-confirmed patients. Results: A total of 2,214 mild to moderate COVID-19 patients were included, of whom 1,095 (49.5%) received regdanvimab treatment. In the analysis of the total cohort, significantly fewer patients in the regdanvimab group than the supportive care group required O2 support (18.4% vs. 27.1%, P < 0.001) and progressed to severe disease (4.0% vs. 8.0%, P < 0.001). In the multivariable analysis, regdanvimab was significantly associated with a decreased risk for O2 support (HR 0.677, 95% CI 0.561-0.816) and progression to severe disease (HR 0.489, 95% CI 0.337-0.709). Among the 939 delta-confirmed patients, O2 support (21.5% vs. 23.5%, P = 0.526) and progression to severe disease (4.2% vs. 7.3%, P = 0.055) did not differ significantly between the regdanvimab and supportive care groups. In the multivariable analyses, regdanvimab treatment was not significantly associated with a decreased risk for O2 support (HR 0.963, 95% CI 0.697-1.329) or progression to severe disease (HR 0.665, 95% CI 0.349-1.268) in delta-confirmed group. Conclusions: Regdanvimab treatment effectively reduced progression to severe disease in the overall study population, but did not show significant effectiveness in the delta-confirmed patients. The effectiveness of dose increment of monoclonal antibody agents should be evaluated for variant strains exhibiting reduced susceptibility.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Retrospective Studies , Antibodies, Monoclonal/therapeutic use , Antibodies, Viral
16.
Curr Opin HIV AIDS ; 18(4): 191-208, 2023 07 01.
Article in English | MEDLINE | ID: covidwho-20237492

ABSTRACT

PURPOSE OF REVIEW: Passive administration of broadly neutralizing antibodies (bNAbs) is being evaluated as a therapeutic approach to prevent or treat HIV infections. However, a number of challenges face the widespread implementation of passive transfer for HIV. To reduce the need of recurrent administrations of bNAbs, gene-based delivery approaches have been developed which overcome the limitations of passive transfer. RECENT FINDINGS: The use of DNA and mRNA for the delivery of bNAbs has made significant progress. DNA-encoded monoclonal antibodies (DMAbs) have shown great promise in animal models of disease and the underlying DNA-based technology is now being tested in vaccine trials for a variety of indications. The COVID-19 pandemic greatly accelerated the development of mRNA-based technology to induce protective immunity. These advances are now being successfully applied to the delivery of monoclonal antibodies using mRNA in animal models. Delivery of bNAbs using viral vectors, primarily adeno-associated virus (AAV), has shown great promise in preclinical animal models and more recently in human studies. Most recently, advances in genome editing techniques have led to engineering of monoclonal antibody expression from B cells. These efforts aim to turn B cells into a source of evolving antibodies that can improve through repeated exposure to the respective antigen. SUMMARY: The use of these different platforms for antibody delivery has been demonstrated across a wide range of animal models and disease indications, including HIV. Although each approach has unique strengths and weaknesses, additional advances in efficiency of gene delivery and reduced immunogenicity will be necessary to drive widespread implementation of these technologies. Considering the mounting clinical evidence of the potential of bNAbs for HIV treatment and prevention, overcoming the remaining technical challenges for gene-based bNAb delivery represents a relatively straightforward path towards practical interventions against HIV infection.


Subject(s)
COVID-19 , HIV Infections , HIV-1 , Animals , Humans , HIV Infections/prevention & control , Broadly Neutralizing Antibodies , HIV Antibodies , Antibodies, Neutralizing , Pandemics , HIV-1/genetics , COVID-19/therapy , Antibodies, Monoclonal/genetics
17.
Proc Natl Acad Sci U S A ; 120(23): e2220948120, 2023 06 06.
Article in English | MEDLINE | ID: covidwho-20236312

ABSTRACT

The antiviral benefit of antibodies can be compromised by viral escape especially for rapidly evolving viruses. Therefore, durable, effective antibodies must be both broad and potent to counter newly emerging, diverse strains. Discovery of such antibodies is critically important for SARS-CoV-2 as the global emergence of new variants of concern (VOC) has compromised the efficacy of therapeutic antibodies and vaccines. We describe a collection of broad and potent neutralizing monoclonal antibodies (mAbs) isolated from an individual who experienced a breakthrough infection with the Delta VOC. Four mAbs potently neutralize the Wuhan-Hu-1 vaccine strain, the Delta VOC, and also retain potency against the Omicron VOCs through BA.4/BA.5 in both pseudovirus-based and authentic virus assays. Three mAbs also retain potency to recently circulating VOCs XBB.1.5 and BQ.1.1 and one also potently neutralizes SARS-CoV-1. The potency of these mAbs was greater against Omicron VOCs than all but one of the mAbs that had been approved for therapeutic applications. The mAbs target distinct epitopes on the spike glycoprotein, three in the receptor-binding domain (RBD) and one in an invariant region downstream of the RBD in subdomain 1 (SD1). The escape pathways we defined at single amino acid resolution with deep mutational scanning show they target conserved, functionally constrained regions of the glycoprotein, suggesting escape could incur a fitness cost. Overall, these mAbs are unique in their breadth across VOCs, their epitope specificity, and include a highly potent mAb targeting a rare epitope outside of the RBD in SD1.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Breakthrough Infections , Antibodies, Monoclonal , Antibodies, Neutralizing , Epitopes , Spike Glycoprotein, Coronavirus/genetics , Antibodies, Viral
18.
Sci Transl Med ; 15(697): eadf4549, 2023 05 24.
Article in English | MEDLINE | ID: covidwho-20233638

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), has been responsible for a global pandemic. Monoclonal antibodies (mAbs) have been used as antiviral therapeutics; however, these therapeutics have been limited in efficacy by viral sequence variability in emerging variants of concern (VOCs) and in deployment by the need for high doses. In this study, we leveraged the multi-specific, multi-affinity antibody (Multabody, MB) platform, derived from the human apoferritin protomer, to enable the multimerization of antibody fragments. MBs were shown to be highly potent, neutralizing SARS-CoV-2 at lower concentrations than their corresponding mAb counterparts. In mice infected with SARS-CoV-2, a tri-specific MB targeting three regions within the SARS-CoV-2 receptor binding domain was protective at a 30-fold lower dose than a cocktail of the corresponding mAbs. Furthermore, we showed in vitro that mono-specific MBs potently neutralize SARS-CoV-2 VOCs by leveraging augmented avidity, even when corresponding mAbs lose their ability to neutralize potently, and that tri-specific MBs expanded the neutralization breadth beyond SARS-CoV-2 to other sarbecoviruses. Our work demonstrates how avidity and multi-specificity combined can be leveraged to confer protection and resilience against viral diversity that exceeds that of traditional monoclonal antibody therapies.


Subject(s)
COVID-19 , Severe acute respiratory syndrome-related coronavirus , Humans , Animals , Mice , SARS-CoV-2 , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , Antiviral Agents
19.
Viruses ; 15(5)2023 05 19.
Article in English | MEDLINE | ID: covidwho-20233031

ABSTRACT

INTRODUCTION: Remdesivir (REM) and monoclonal antibodies (mAbs) could alleviate severe COVID-19 in at-risk outpatients. However, data on their use in hospitalized patients, particularly in elderly or immunocompromised hosts, are lacking. METHODS: All consecutive patients hospitalized with COVID-19 at our unit from 1 July 2021 to 15 March 2022 were retrospectively enrolled. The primary outcome was the progression to severe COVID-19 (P/F < 200). Descriptive statistics, a Cox univariate-multivariate model, and an inverse probability treatment-weighted (IPTW) analysis were performed. RESULTS: Overall, 331 subjects were included; their median (q1-q3) age was 71 (51-80) years, and they were males in 52% of the cases. Of them, 78 (23%) developed severe COVID-19. All-cause in-hospital mortality was 14%; it was higher in those with disease progression (36% vs. 7%, p < 0.001). REM and mAbs resulted in a 7% (95%CI = 3-11%) and 14% (95%CI = 3-25%) reduction in the risk of severe COVID-19, respectively, after adjusting the analysis with the IPTW. In addition, by evaluating only immunocompromised hosts, the combination of REM and mAbs was associated with a significantly lower incidence of severe COVID-19 (aHR = 0.06, 95%CI = 0.02-0.77) when compared with monotherapy. CONCLUSIONS: REM and mAbs may reduce the risk of COVID-19 progression in hospitalized patients. Importantly, in immunocompromised hosts, the combination of mAbs and REM may be beneficial.


Subject(s)
COVID-19 , Aged , Male , Humans , Aged, 80 and over , Female , Retrospective Studies , COVID-19 Drug Treatment , Antibodies, Monoclonal/therapeutic use , Antibodies, Neutralizing , Immunocompromised Host , Disease Progression
20.
Blood Adv ; 7(11): 2643-2644, 2023 06 13.
Article in English | MEDLINE | ID: covidwho-20232691
SELECTION OF CITATIONS
SEARCH DETAIL